亚洲制服欧美另类-午夜激情av电影-日本高清中文字幕一区二区三区-中国欧美日韩一区二区三区-欧洲亚洲日本韩国-成人欧美激情一区二区-亚洲偷偷自拍高清

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
欧美V亚洲V综合V国产V,午夜精品成人一区二区视频,日本xXXx色视频在线播放
首頁 > 產(chǎn)品中心 > 標記一抗 > 產(chǎn)品信息
Rabbit Anti-Phospho-Insulin Receptor (Tyr999) /Gold Conjugated antibody (bs-16680R-Gold)
訂購熱線:400-901-9800
訂購郵箱:sales@bioss.com.cn
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@bioss.com.cn
說 明 書: 100ul(10nm  15nm  35nm
100ul/2980.00元
大包裝/詢價
產(chǎn)品編號 bs-16680R-Gold
英文名稱 Rabbit Anti-Phospho-Insulin Receptor (Tyr999) /Gold Conjugated antibody
中文名稱 膠體金標記的磷酸化胰島素受體抗體
別    名 Insulin Receptor (phospho Y999); p-Insulin Receptor (phospho Y999); CD 220; CD220; CD220 antigen; HHF 5; HHF5; human insulin receptor; INSR; INSR_HUMAN; Insulin receptor subunit beta; IR 1; IR; IR-1; IR1.  
規(guī)格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul(10nm  15nm  35nm
產(chǎn)品類型 磷酸化抗體 
研究領(lǐng)域 細胞生物  信號轉(zhuǎn)導  生長因子和激素  激酶和磷酸酶  糖尿病  新陳代謝  細胞膜蛋白  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human, Rat,  (predicted: Chicken, Cow, Horse, )
產(chǎn)品應(yīng)用 IEM=1:20-200 ICA=1:20-200 ChIP=1:20-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 70kDa
性    狀 Lyophilized or Liquid
濃    度 0.4mg/ml
免 疫 原 KLH conjugated synthesised phosphopeptide derived from human Insulin Receptor around the phosphorylation site of Tyr999
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.02M TBS(pH8.2) with 1% BSA, 0.03% Proclin300.
保存條件 Store at 2-8 oC for 3-6 months. Avoid repeated freeze/thaw cycles.
產(chǎn)品介紹 background:
After removal of the precursor signal peptide, the insulin receptor precursor is post-translationally cleaved into two chains (alpha and beta) that are covalently linked. Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

Function:
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Subunit:
Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Forms a hybrid receptor with IGF1R, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with SORBS1 but dissociates from it following insulin stimulation. Binds SH2B2. Activated form of INSR interacts (via Tyr-999) with the PTB/PID domains of IRS1 and SHC1. The sequences surrounding the phosphorylated NPXY motif contribute differentially to either IRS1 or SHC1 recognition. Interacts (via tyrosines in the C-terminus) with IRS2 (via PTB domain and 591-786 AA); the 591-786 would be the primary anchor of IRS2 to INSR while the PTB domain would have a stabilizing action on the interaction with INSR. Interacts with the SH2 domains of the 85 kDa regulatory subunit of PI3K (PIK3R1) in vitro, when autophosphorylated on tyrosine residues. Interacts with SOCS7. Interacts (via the phosphorylated Tyr-999), with SOCS3. Interacts (via the phosphorylated Tyr-1185, Tyr-1189, Tyr-1190) with SOCS1. Interacts with CAV2 (tyrosine-phosphorylated form); the interaction is increased with 'Tyr-27'phosphorylation of CAV2 (By similarity). Interacts with ARRB2 (By similarity). Interacts with GRB10; this interaction blocks the association between IRS1/IRS2 and INSR, significantly reduces insulin-stimulated tyrosine phosphorylation of IRS1 and IRS2 and thus decreases insulin signaling. Interacts with GRB7 (By similarity). Interacts with PDPK1. Interacts (via Tyr-1190) with GRB14 (via BPS domain); this interaction protects the tyrosines in the activation loop from dephosphorylation, but promotes dephosphorylation of Tyr-999, this results in decreased interaction with, and phosphorylation of, IRS1. Interacts (via subunit alpha) with ENPP1 (via 485-599 AA); this interaction blocks autophosphorylation. Interacts with PTPRE; this interaction is dependent of Tyr-1185, Tyr-1189 and Tyr-1190 of the INSR. Interacts with STAT5B (via SH2 domain). Interacts with PTPRF.

Subcellular Location:
Cell membrane.

Tissue Specificity:
Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas.

Post-translational modifications:
After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane.

DISEASE:
Rabson-Mendenhall syndrome Leprechaunism Diabetes mellitus, non-insulin-dependent Familial hyperinsulinemic hypoglycemia 5 Insulin-resistant diabetes mellitus with acanthosis nigricans type A.

Similarity:
Belongs to the protein kinase superfamily. Tyr protein kinase family.
Insulin receptor subfamily.
Contains 3 fibronectin type-III domains.
Contains 1 protein kinase domain.

Database links:

Entrez Gene: 3643 Human

Entrez Gene: 16337 Mouse

Entrez Gene: 24954 Rat

Omim: 147670 Human

SwissProt: P06213 Human

SwissProt: P15208 Mouse

SwissProt: P15127 Rat

Unigene: 465744 Human

Unigene: 268003 Mouse

Unigene: 9876 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.a6308.cn 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
极品少妇被后入内射视 | 无码人妻AⅤ一区二区三区夏目 | 公与淑婷厨房猛烈进出视频韩国 | 欧美亚洲性色影视在线 | 日韩欧美视频一区 | 青草园网站在线观看 | 日韩人欧美?片内射∵久久中国 | 黑巨人与欧美精品一区 | 国产精品久久久久久久久免费蜜桃 | 精品欧洲视频人人视频网站 | 青青草原免费在线视频 | 日本黄页免费视频播放网站 | 精品极品三大极久久久久 | 国产一区二区三区在线 | 麻豆果冻传媒新剧国产杜鹃 | 狠狠人妻久久久久久综合 | 真实人与人性恔配视频 | 久久人做人爽一区二区三区 | 日韩高清成片免费视频 | 亚洲欧美日韩在线不卡 | 亚洲国产另类久久久精品 | 仓本c仔酒店大战172魔鬼身材 | 在线中文字幕亚洲第一 | 少妇被粗大猛烈进出免费视频 | 高h肉肉免费全部视频观看 bbbbbxxxxx精品人 | 免费在线观看的毛片 | 91免费精品国偷自产在线不卡 | 中文字幕日韩专区下载 | 亚洲aaaa级特黄毛片 | 两个人看的www视频中文字幕 | 亚洲春色AV无码专区 | 她的丝袜脚胯下圣水尿 | 青草草在线视频永久免费 | 日韩精品区一区二区三VR | 国产精品1区2区 | 五十丰满熟妇性旺盛 | 91露出自慰白浆一区二区 | 免费黃色三級片在线观看18 | 18禁美女黄网站色大片免费看 | 女人赤裸裸正面下身照片 | 国产精品视频一区二区猎奇 |